Molecular Structure Corporation (1988). CONTROL. An Automatic Package for Rigaku AFC-5R Single Crystal Diffractometers. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst A24, 351-359.
Planalp, R. P. \& Vahrenkamp, H. (1987). Organometallics, 6, 492499.

Richter, F. \& Vahrenkamp, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 444-445.
Sheng, T.-L., Du, S.-W. \& Wu, X.-T. (1993a). J. Cluster Sci. 4, 89103.

Sheng, T.-L., Du, S.-W. \& Wu, X.-T. (1993b). Polyhedron, 12, 111115.

Zhu, N.-Y., Du, S.-W., Chen, P.-C. \& Wu, X.-T. (1992). J. Coord. Chem. 26, 35-43.

Acta Cryst. (1996). C52, 29-31

The Polymeric Cluster Compound $\left[\left(t \text { tmenH }_{2}\right) .\left(\mathbf{W}_{2} \mathrm{Ag}_{2} \mathrm{~S}_{8}\right) \text {.(tmen). }\left(\mathrm{H}_{2} \mathbf{O}\right)\right]_{n}$ (tmen $=N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine)

Qun Huang, Xintao Wu,* Tianlu Sheng and Quanming Wang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 24 January 1995; accepted 3 July 1995)

Abstract

The structure of the $\left(\mathrm{W}_{2} \mathrm{Ag}_{2} \mathrm{~S}_{8}\right)^{2-}$ anion of the title cluster compound, catena-poly[$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediammonium bis(tungsten-di- μ-sulfido-silver-di- μ-sulfido) $N, N, N^{\prime}, N^{\prime}$ - tetramethylethylenediamine hydrate], $\left\{\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{W}_{2} \mathrm{Ag}_{2} \mathrm{~S}_{8}\right] .\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, can be described as a polymeric chain consisting of extended $>\mathrm{AgS}_{2} \mathrm{~W}<$ fragments. In the chain, which has disordered W and Ag atoms, neighbouring fragments of this kind are alternately nearly perpendicular to each other. Water molecules are connected to the $\mathrm{menH}_{2}{ }^{2+}$ cations and tmen molecules through hydrogen bonding.

Comment

A few polymeric compounds containing different metals have been reported (Nicholson, Flood, Garner \& Clegg, 1983; Müller, Jaegermann \& Hellmann, 1983; Pruss, Snyder \& Stacy, 1993). However, only some structures of such compounds have been characterized by singlecrystal X-ray diffraction analyses (Müller, Dartmann,

Romer, Clegg \& Sheldrick, 1981; Lang, Li, Bao \& Xin, 1993). The structure of the title compound, (I), was investigated as a new member of this type.

(I)

ORTEPII (Johnson, 1976) drawings of a portion of the anionic chain and of the hydrogen-bonding structure are shown in Fig. 1. The W and Ag atoms are disordered, so the chemical composition may be represented as $\left[\left(t \text { tmenH }_{2}\right) \cdot\left(M_{4} \mathrm{~S}_{8}\right) \text {.(tmen). }\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(M=$ $0.50 \mathrm{~W}+0.50 \mathrm{Ag}$ and tmen $=N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine). The anion has a polymeric chain structure, which is propagated by inversion symmetry, with extended rhombic networks of $>M \mathrm{~S}_{2} M<$ being alternately nearly perpendicular to each other [dihedral angles of $87.9(2)$ and $\left.91.6(2)^{\circ}\right]$. Each M atom displays distorted tetrahedral coordination with four $\mu_{2}-\mathrm{S}$ atoms. As a result of the disorder, the average value $[2.350(10) \AA$] of the $M-\mathrm{S}$ bond lengths is larger than reported $\mathrm{W}-\mu_{2}-\mathrm{S}$ lengths [2.191 (5)2.224 (6) \AA] and smaller than reported $\mathrm{Ag}-\mu_{2}-\mathrm{S}$ lengths

Fig. 1. (a) Structure of a portion of the anionic chain showing 20% probability displacement ellipsoids. (b) Diagram of the hydrogenbonding pattern showing 20% probability displacement ellipsoids.
[2.475 (6)-2.580 (6) \AA §] in $\left[\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Ag}_{2} \mathrm{WS}_{4}\right] .0 .8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Müller, Bögge \& Koniger-Ahlborn, 1979). Compared with W $\cdots \mathrm{Ag}$ distances in $\left[\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Ag}_{2} \mathrm{WS}_{4}\right] \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ [2.971 (2) \AA] and $\left[\mathrm{Ag}_{4} \mathrm{~W}_{2} \mathrm{~S}_{8}\left(\mathrm{PMePh}_{2}\right)_{4}\right]$ [3.002 (2) \AA] (Stalick, Siedle, Mighell \& Hubbard, 1979), the average $M \cdots M$ distance of 2.946 (2) \AA suggests that there is a slight $\mathrm{W} \cdots \mathrm{Ag}$ interaction in the chain.

The structure determination shows that the water molecule, the tmen molecule and the $\mathrm{tmenH}_{2}{ }^{2+}$ cation lie on twofold axes, and there are hydrogen bonds between O 1 and N 1 (and $\mathrm{N} 1 c$), and between O 1 and $\mathrm{N} 2 e$ (and $\mathrm{N} 2 f$): $\mathrm{Ol}-\mathrm{H} 1 \cdots \mathrm{~N} 12.85(3)$, $\mathrm{Ol}-\mathrm{H} 1 c \cdots \mathrm{Nlc}$ 2.85 (3), $\mathrm{O} 1 \cdots \mathrm{H} 2 e-\mathrm{N} 2 e 2.82$ (3) and $\mathrm{O} 1 \cdots \mathrm{H} 2 f-\mathrm{N} 2 f$ 2.82 (3) A.

Experimental

The compound was prepared by the reaction of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WS}_{4}$, AgNO_{3} and tmen (molar ratio 1:1:2) in $\mathrm{H}_{2} \mathrm{O}$, and recrystallized from DMF. The orange-yellow crystals are stable in air.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{W}_{2} \mathrm{Ag}_{2} \mathrm{~S}_{8}\right]$.-
$\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right) . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1092.40$
Monoclinic
C2/c
$a=8.641$ (4) £
$b=21.921$ (4) \AA
$c=16.298(4) \AA$
$\beta=97.67(3)^{\circ}$
$V=3059.7 \AA^{3}$
$Z=4$
$D_{x}=2.37 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: refined from ΔF (Walker \& Stuart, 1983)
$T_{\text {min }}=0.13, T_{\text {max }}=0.15$
2979 measured reflections
2780 independent reflections 1151 observed reflections

$$
[I>3 \sigma(I)]
$$

Refinement

Refinement on F
$R=0.053$
$w R=0.054$
$S=1.44$
1151 reflections
89 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left(0.010 F_{o}\right)^{2}\right.$ $+1]$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=3-12.5^{\circ}$
$\mu=9.45 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Rectangular
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
Orange-yellow
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 26$
$l=-19 \rightarrow 19$
3 standard reflections monitored every 300 reflections
intensity decay: 4.2%
$(\Delta / \sigma)_{\text {max }}=0.33$
$\Delta \rho_{\text {max }}=1.55 \mathrm{e} \AA$ (adjacent to metal atoms)
$\Delta \rho_{\text {min }}=-0.77 \mathrm{e} \AA$ (adjacent to metal atoms)
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {sso }}$ for C atoms; $B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ for others.				
	x	y	z	$B_{\text {eq }} / B_{\text {iso }}$
M1*	0.4377 (2)	0.43701 (7)	0.4986 (1)	3.70 (3)
M2*	0.3113 (2)	0.31206 (7)	0.4959 (1)	4.12 (3)
S1	0.491 (1)	0.3532 (5)	0.4165 (6)	7.1 (2)
S2	0.254 (1)	0.3964 (5)	0.5766 (6)	7.4 (3)
S3	0.337 (1)	0.5225 (5)	0.4234 (6)	6.7 (2)
S4	0.092 (1)	0.2717 (5)	0.4169 (6)	7.7 (3)
Ol	1/2	0.063 (1)	1/4	4.2 (6)
N1	0.348 (2)	0.173 (1)	0.193 (1)	3.9 (5)
N2	0.128 (2)	0.454 (1)	0.196 (1)	4.3 (5)
Cll	0.187 (4)	0.167 (1)	0.208 (2)	5.5 (7)
C12	0.342 (4)	0.181 (1)	$0.108(2)$	5.3 (7)
C13	0.413 (4)	0.224 (2)	0.244 (2)	6.4 (9)
C21	0.080 (4)	0.446 (1)	0.105 (2)	6.2 (8)
C22	0.303 (4)	0.459 (2)	0.209 (2)	6.8 (9)
C23	0.085 (4)	0.403 (2)	0.246 (2)	7.0 (9)

* Mixed site M is defined as $0.50 \mathrm{~W}+0.50 \mathrm{Ag}$.

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$M 1 \cdots M 1 a^{\prime}$	$2.962(2)$	$M 2 \cdots M 2 b^{\prime \prime}$	$2.929(2)$
$M 1 \cdots M 2$	$2.947(2)$	$M 2-\mathrm{S} 1$	$2.331(9)$
$M 1-\mathrm{S} 1$	$2.355(9)$	$M 2-\mathrm{S} 2$	$2.360(10)$
$M 1-\mathrm{S} 2$	$2.340(9)$	$M 2-\mathrm{S} 4$	$2.317(9)$
$M 1-\mathrm{S} 3$	$2.343(9)$	$M 2-\mathrm{S} 4 b^{\prime \prime}$	$2.401(10)$
$M 1-\mathrm{S} 3 a^{\prime}$	$2.354(9)$		
$M 1 a^{\prime} \cdots M 1 \cdots M 2$	$179.56(8)$	$M 1 \cdots M 2-\mathrm{S} 2$	$50.9(3)$
$M 1 a^{\prime} \cdots M 1-\mathrm{S} 1$	$129.6(3)$	$M 1 \cdots M 2-\mathrm{S} 4$	$129.6(3)$
$M 1 a^{\prime} \cdots M 1-\mathrm{S} 2$	$128.3(3)$	$M 1 \cdots M 2-\mathrm{S} 4 b^{\prime \prime}$	$127.1(2)$
$M 1 a^{\prime} \cdots M 1-\mathrm{S} 3$	$51.1(2)$	$M 2 b^{\prime \prime} \cdots M 2-\mathrm{S} 1$	$131.0(3)$
$M 1 a^{\prime} \cdots M 1-\mathrm{S} 3 a^{\prime}$	$50.7(3)$	$M 2 b^{\prime \prime} \cdots M 2-\mathrm{S} 2$	$126.7(3)$
$M 2 \cdots M 1-\mathrm{S} 1$	$5(0.7(3)$	$M 2 b^{\prime \prime} \cdots M 2-\mathrm{S} 4$	$52.9(3)$
$M 2 \cdots M 1-\mathrm{S} 2$	$51.5(3)$	$M 2 b^{\prime \prime} \cdots M 2-\mathrm{S} 4 b^{\prime \prime}$	$50.3(2)$
$M 2 \cdots M 1-\mathrm{S} 3$	$128.6(2)$	$\mathrm{S} 1-M 2-\mathrm{S} 2$	$102.3(4)$
$M 2 \cdots M 1-\mathrm{S} 3$	$129.6(3)$	$\mathrm{S} 1-M 2-\mathrm{S} 4$	$113.2(4)$
$\mathrm{S} 1-M 1-\mathrm{S} 2$	$102.1(4)$	$\mathrm{S} 1-M 2-\mathrm{S} 4 b^{\prime \prime}$	$114.8(4)$
$\mathrm{S} 1-M 1-\mathrm{S} 3$	$114.5(3)$	$\mathrm{S} 2-M 2-\mathrm{S} 4$	$113.1(4)$
$\mathrm{S} 1-M 1-\mathrm{S} 3 a^{\prime}$	$113.0(3)$	$\mathrm{S} 2-M 2-\mathrm{S} 4 b^{\prime \prime}$	$110.5(4)$
$\mathrm{S} 2-M 1-\mathrm{S} 3$	$110.9(3)$	$\mathrm{S} 4-M 2-\mathrm{S} 4 b^{\prime \prime}$	$103.3(4)$
$\mathrm{S} 2-M 1-\mathrm{S} 3 a^{\prime}$	$115.1(3)$	$M 1-\mathrm{S} 1-M 2$	$77.9(3)$
$\mathrm{S} 3-M 1-\mathrm{S} 3 \mathrm{a}^{\prime}$	$101.8(3)$	$M 1-\mathrm{S} 2-M 2$	$77.6(3)$
$M 1 \cdots M 2 \cdots M 2 b^{\prime \prime}$	$176.52(8)$	$M 1-\mathrm{S} 3-M 1 a^{\prime}$	$78.3(3)$
$M 1 \cdots M 2-\mathrm{S} 1$	$51.4(3)$	$M 2-\mathrm{S} 4-M 2 b^{\prime \prime}$	$76.7(3)$

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.
Table 3. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$

D-H. \cdot A	D-H	H \cdots A	D... A	D-H... A
$\mathrm{Ol}-\mathrm{HI} \cdots \mathrm{Nl}$	0.95 (2)	2.04 (2)	2.85 (3)	142 (4)
$\mathrm{Ol}-\mathrm{Hlc} \cdot \cdots \mathrm{Nl} c^{\prime}$	0.95 (2)	2.04 (2)	2.85 (3)	142 (4)
$\mathrm{N} 2 e-\mathrm{H} 2 e . . \mathrm{Ol}{ }^{\prime \prime}$	0.96 (2)	1.88 (3)	2.82 (3)	172 (4)
$\mathrm{N} 2 f-\mathrm{H} 2 \mathrm{f}$. $\mathrm{Ol}^{\prime \prime \prime}$	0.96 (2)	1.88 (3)	2.82 (3)	172 (4)

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-x, y-$ $\frac{1}{2}, \frac{1}{2}-z$.
H atoms bonded to C atoms were located theoretically and fixed as riding atoms; those bonded to O 1 and N 2 atoms were located from difference Fourier syntheses and also fixed as riding atoms.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976).

This research was supported by grants from the State Key Laboratory of Structural Chemistry, Fujian Institute
of Research on Structure of Matter, Chinese Academy of Sciences, and the National Science Foundation of China.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1066). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lang, J.-P., Li, J.-G., Bao, S. \& Xin, X.-Q. (1993). Polyhedron, 12, 801-806.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Müller, A., Bögge, H. \& Koniger-Ahlborn, E. (1979). Z. Naturforsch Teil B, 34, 1698-1702.
Müller, A., Dartmann, D., Romer, C., Clegg, W. \& Sheldrick, G. M. (1981). Angew. Chem. Int. Ed. Engl. 20, 1060-1061.

Müller, A., Jaegermann, W. \& Hellmann, W. (1983). J. Mol. Struct. 100, 559-570.
Nicholson, J. R., Flood, A. C., Garner, C. D. \& Clegg, W. (1983). J. Chem. Soc. Chem. Commun. pp. 1179-1180.
Pruss, E. A., Snyder, B. S. \& Stacy, A. M. (1993). Angew. Chem. Int. Ed. Engl. 32, 256-257.
Stalick, J. K., Siedle, A. R., Mighell, A. D. \& Hubbard, C. R. (1979). J. Am. Chem. Soc. 101, 2903-2907.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 31-33

Bis(1,2-benzenediolato)dimethanolgermanium(IV)

Hung-Cheh Chiang,* Shin-Fung Hwang and Chuen-Her Ueng*
Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

(Received 26 November 1993: accepted 6 June 1995)

Abstract

[$\left.\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right] .2 \mathrm{CH}_{3} \mathrm{OH}$ was prepared from germanium dioxide and catechol in refluxing $\mathrm{H}_{2} \mathrm{O}$ followed by refluxing the crude product in methanol; the product was identified by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. The complex has a slightly distorted octahedral structure with two methanol ligands in axial positions and two bidentate deprotonated catechols in equatorial positions. The $\mathrm{Ge}-\mathrm{O}$ bonds involving the methanol groups are longer than the $\mathrm{Ge}-\mathrm{O}$ bonds involving the catechol ligands.

Comment

Reports concerned with the structures of germanium complexes indicate that the coordination numbers of the central Ge atom are diverse (Yoder \& Zukerman, 1967; Sau \& Holmes, 1981; Day, Holmes, Sau \& Holmes, 1982; Lazraq, Couret, Declercq, Dubourg, Escudie \& Riviere-Bandet, 1990; Cereau, Chuit, Corriu \& Reye, 1991). Among these, Yoder \& Zukerman (1967) reported that the complex $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ has an octahedral structure and $\mathrm{Sau} \&$ Holmes (1981) showed that the complex $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{X}\right]^{-}$is square pyramidal. These interesting findings have prompted our investigation of related derivatives with catechol, as a part of a general study of the structures of germanium complexes (Chiang, Lin \& Ueng, 1992; Chiang, Wang \& Ueng, 1993). Here we report the synthesis and structure of the title compound, (I).

An ORTEP diagram (Johnson, 1965) of the molecular structure is shown in Fig. 1. The complex has a slightly distorted octahedral structure with two methanol molecules in axial positions and two bidentate deprotonated catechol moieties in equatorial positions. The Ge atom lies on a crystallographic inversion centre, as found in $\left[\mathrm{Ge}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left\{\mathrm{OCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{COO}_{2}\right]\right.$ (Sterling, 1967) and $\left[\mathrm{Ge}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{COO}\right)_{2}\right]$ (Chiang, Wang \& Ueng, 1993). The 12 cis angles around the metal are in the range $89.3(1)-90.8(1)^{\circ}$ and the dihedral angles between two of the three mutually perpendicular planes are $90.06(5), 89.25(5)$ and $90.50(5)^{\circ}$. The $\mathrm{Ge}-\mathrm{O}$ bond lengths for the methanol group are longer than those for the catechol groups owing to the stronger coordination for the aryloxide ligands. The good planarity of the fivemembered chelate rings is indicated by the sum of the

Fig. 1. ORTEP (Johnson, 1965) drawing of the molecular structure of $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$. Displacement ellipsoids are shown at the 50% probability level.

